Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations
نویسندگان
چکیده
In this work, the error behavior of operator splitting methods is analyzed for highly-oscillatory differential equations. The scope of applications includes time-dependent nonlinear Schrödinger equations, where the evolution operator associated with the principal linear part is highly-oscillatory and periodic in time. In a first step, a known convergence result for the second-order Strang splitting method applied to the cubic Schrödinger equation is adapted to a wider class of nonlinearities. In a second step, the dependence of the global error on the decisive parameter 0 < ε << 1, defining the length of the period, is examined. The main result states that, compared to established error estimates, the Strang splitting method is more accurate by a factor ε, provided that the time stepsize is chosen as an integer fraction of the period. This improved error behavior over a time interval of fixed length, which is independent of the period, is due to an averaging effect. The extension of the convergence result to higher-order splitting methods and numerical illustrations complement the investigations.
منابع مشابه
Multi-revolution composition methods for highly oscillatory differential equations
We introduce a new class of multi-revolution composition methods (MRCM) for the approximation of the Nth-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory systems of differential equations, the technique benefits from the properties of standard composition methods: it is intrinsically geometric and well-suited for Hamiltonian or divergence-fre...
متن کاملDefect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case
The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrödinger equations, asymptotical correctness of the local error estimators associated...
متن کاملDefect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case
We introduce a defect correction principle for exponential operator splitting methods applied to time-dependent linear Schrödinger equations and construct a posteriori local error estimators for the Lie–Trotter and Strang splitting methods. Under natural commutator bounds on the involved operators we prove asymptotical correctness of the local error estimators, and along the way recover the kno...
متن کاملConvergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations
In this work, the issue of favorable numerical methods for the space and time discretization of low-dimensional nonlinear Schrödinger equations is addressed. The objective is to provide a stability and error analysis of high-accuracy discretizations that rely on spectral and splitting methods. As a model problem, the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Ei...
متن کاملError Analysis of High-order Splitting Methods for Nonlinear Evolutionary Schrödinger Equations and Application to the Mctdhf Equations in Electron Dynamics
In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 85 شماره
صفحات -
تاریخ انتشار 2016